KENYA HIGH SCHOOL MOCK 2020 PHYSICS PAPER 2

rnisics rr	AT EK Z	
SECTION A: (25 MARKS) 1. What property of light is suggested by the formation of the formation of the suggested by the suggested by the formation of the suggested by the suggested by the formation of the suggested by the sugge	tion of shadows	(1 mark)
	9 41	

The figure below shows how a distant object is focused on a defective eye

Suggest the nature of the defect and suitable lens to correct the defect

(2 marks)

State with a reason a suitable metal that is used as a filament in an electric lamp (2 marks) 3.

Name one type of electromagnetic radiation that Kills cancerous cells

(b) Ionises air

(2 marks)

State two conditions to be satisfied for total internal reflection of light to take place (2 marks) (a) •

State one effect that would be observed when water waves pass from deep water to (1 mark)

State the condition for a minimum to occur in the interference process of waves (b) (1 mark)

Explain why alternating voltage is preferred to direct voltage in the national grid transmission system (1 mark)

When a candle flame is brought near the cap of a changed electroscope, the electroscope discharges. Explain this observation (2 marks)

8.

The figure below shows two magnets placed such that the like poles are on same side Ν s N S

Sketch the magnetic field pattern and indicate any neutral points

(2 marks)

PHYSICS KENYA HIGH

(b)

2.

4.

5:

6.

7.

Sketch a ray diagram to show the image formed when a convex lens is used as a simple microscope

(2 marks)

State two ways in which polarization reduces the p.d across a simple cell

9.

10.

11.

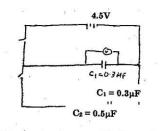
PHYSICS KENYA HIGH

(2 marks)

Explain why, in general good conductor of electricity are also good conductor of heat (1 mark)

.*

12. Figures a and b below show two wave fronts approaching opening of different sizes

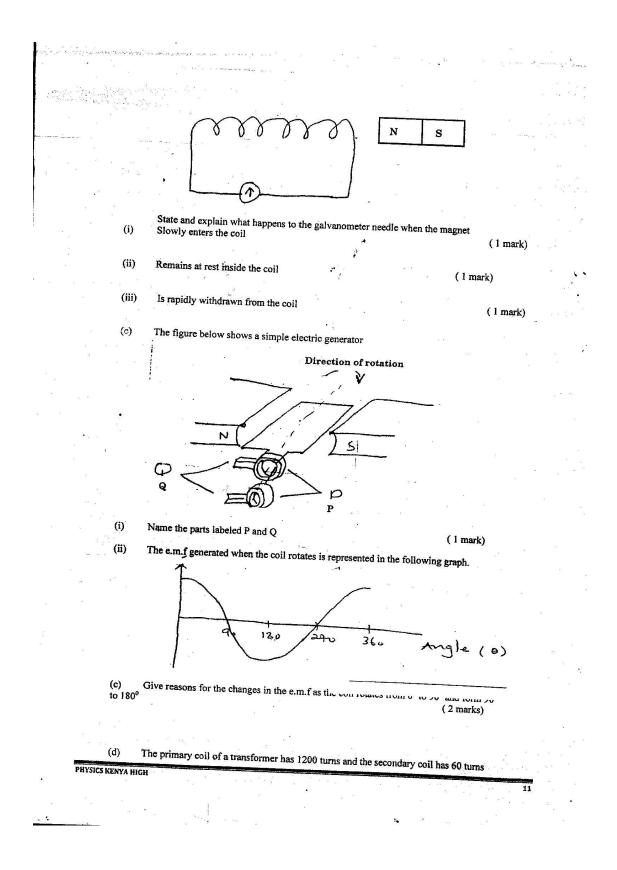

Sketch the appearance of the waves after passing the opening

(2 marks)

13. A soldier slanding some distance from a wall blow a whistle and hears its echo 1.8 second later. How far is the wall from the solder(speed of sound in air is 330m/s)

Attempt all the questions in this section in space provided SECTION B

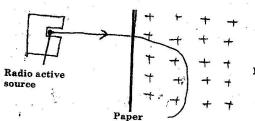

(a) The figure below shows a circuit where a battery of 4.5V switches A and B, two capacitors c1 =0.3μF and C2 =0.5μF and a voltmeter are connected


(i) Determine the charge on C1 when switch A is closed and switch B is open (1 mark)

1. N	14 - 1 4 - 1		
а ч аг а он			. .
	Terra ya		
	i.	an a	
	(ii)	What is the effective capacitance C1 of the circuit	(1 mark)
	а , к	•	
<u></u>	b) (i)	State what is observed on the voltmeter in the circuit when Switch A is closed and switch B is open	(1 mark)
1	(ii)	Switch A is closed and opened and then switch B closed	(1 mark)
	(iii)	Explain the observation made in (b)(ii) above	(1 mark)
	(c)	The following figure shows a circuit consisting of a resistor and a capac used to charge a capacitor.	itor that may be
2 2			
		SV	c
2	i)	State the observations made on the milliameter when the switch is closer	d. (1mk)
	ii)	Explain the observation made in (c) (i) above.	
1			(1mk)
-	(1)		
• * * *	(d)	The circuit in the figure above is left on for sometime. State the value of (i) The resistor R	the p.d across (1 mark)
ъ к л ^к		(ii) The capacitor C	(1 mark)
		а. м	* # #
	-		
8		, ,	
((e)	Sketch a graph of potential difference V across R against time t, for a cha capacitor	unging

(1 mark) PHYSICS KENYA HIGH PHYSICS KENYA HIGH 9 • 5

PHYSICS KENYA HIGH 10



						а 1	
			The transformer is connected	ed to a 240v a.c sou	Irce		
		,	Determine (i) The output voltage				* *
х х			() The output voltage	(4)		(2 mari	s)
			.2		•		•
			(ii) The output current	when the primary c	coil has a current of	f 0.5 A. Assume there	а .
			are no energy losses				
						(2 mark	s)
	16.	(2) \$1	Sta two opplications of all 1		· · · ·	n	
		(4) 54	ate two applications of cathode	e ray oscilloscope	2 (A)	(2 marks)	
						- <u>1</u>	
1.2	2	(b)	The diagram below shows a	oothodo mutute (n
		oscille	oscope(CRO)	reactione ray tube (CR1) of a cathode	ray	н ²¹ П
			~				
15			Accelerating and focusing	y-plates		· · ·	
			electrode	/ pintes	1		
				1	. T	- Flourescent	
	c	athode		=======			a all is
		0 100 10			· · · · /	Electron beam	
		• •	4-4		~ 1		
		I	Heater	X-plates		5 k	
			. grid		Vacuum	a. *	
		()				•	
		(i)	Explain how electrons are pr	roduced in the tube		(3 marks)	
				л ^н г			
		(ii)	Explain how the control grid	controls the bright	ness of the spot on	the screen	l v m
						(2 marks)	
		(iii)	Why is it a cessary to earth t	the screen		(2 marks)	i shir
			Ψ.			(2 marks)	
		(iv)	It is possible for x-rays to be	produced in this th	he Explain		2
			-		oor Expran	(2 marks	9
			19 °	· · · ·	,		
	1	(c)	The diagram below shows the	e appearance of a s	ignal on a CRO scr	reen	
				1	—,		
			+21-12				·
				VVV			E
				XIA	70	<i>x</i>	
				P + P	-1		
				1	_1	x 1 ₀ 1	* . *
							. ·
			Skotah the				
			Sketch the appearance of the halved	he signal if the p.c	l of the source is	doubled and the freque	ncy
P	IVSICS	KENYA HI					
		2				an an an an	12

17.

(a)

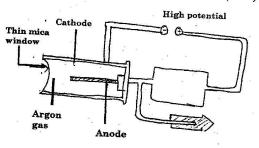
The figure below show the path of radiation from a radioactive source after entering \mathbf{a} magnetic field. The magnetic field is directed perpendicularly to the plane of a paper

Magnetic field

Identify the radiation and give a reason for your answer

(1 marks)

n Bogika


(2 marks

(b)

i

i

The figure below shows a gelger --Muller tube (G-M)

(i)	Give a reason why the mica window is made thin	(1 mark)	۰ _. .
(ii)	State the effect of the radiation on the low pressure gas inside the tube	(1 mark)	
(iii)	Explain how the large discharge current is created	(1 mark)	
(iv)	Explain how radiation entering the tube through the mica window is dete tube		
(v)	What is the purpose of the halogen vapor	(1 mark) (1 mark)	
(C) CS KENYA HI	State the effects on the electrons emitted by photoelectric effect when	· · ·	
	(ii) (iii) (iv) (v) (c)	 (ii) State the effect of the radiation on the low pressure gas inside the tube (iii) Explain how the large discharge current is created (iv) Explain how radiation entering the tube through the mica window is dete tube (v) What is the purpose of the halogen vapor 	 (ii) State the effect of the radiation on the low pressure gas inside the tube (1 mark) (iii) Explain how the large discharge current is created (1 mark) (iv) Explain how radiation entering the tube through the mica window is detected in the tube (1 mark) (v) What is the purpose of the halogen vapor (1 mark) (c) State the effects on the electrons emitted by photoelectric effect when

13

												10
			1. 1. 1.					10.0	1. N.Y.		· ·	· ·
		(i)	The intensit	y of incide	ent radiation	n is increa	sed			(1 mark)	i .	n
									2	(1 11111)	5	
			m	[.] .		220	• •					
		(ii)	The frequen	cy of the i	ncident rad	liation is in	ncreased			(1 marl	c) · · · ·	10
6		() (* (a)	1. 1.		10 							
	(d)	The m	aximum wav	elength of	light mouth				a.).,			
۰.		Julia	ce is 8.0 x 10 ⁻¹⁴ HZ	⁷ m. The n	netal surfac	ce is irradi	ated with	light of	f frequ	on on a me iency	etal	
		0.0 A	10 112	1.1							5 % data	
										÷		
		ermine								2.2		
	(i)	The thresh	hold frequency	y.			÷			(2	x	
				4.		* 1		8 A.	1.1	(2 marks	5)	
	(ii)	The work	function of th	e metal in	electron vo	olts				(2 marks	c)	
					,					(·) ·	
				5						· · · ·		
	(iii)	The mavir	num kinetic e									
	()	V = 16 x	$10^{-19}, c = 3.0$	nergy of the	h = 6.62	electrons						
-			,0 - 5.0	x 10 m/s,	n = 0.02 x	10				(2 marks	i)	
							*					
									,			
18	(a)	Sketch	a current- vo	ltage chara	acteristic gr	aph of a ju	unction di	iode (n-	n inne	tion) with		
		a forv	ward bias conn	nection				u u	June	(2 marks)		a
2			· .							(2 11101 K3)		ť
	(b)	-		•							· · · ·	l.
	. (0)	WIIO WII	and n – type s as doping			ide from p	ure semi-	conduc	tor by	a process	n va de pi	
ł.		(i)	What is mean	nt by dopir	ng		0			(1 mark)		- 1
			10		1							·
	(ii)	Explain	h h w the da-	ing process		1.0				11 A.2		
	()	~npiun	n h 3 w the dop	ing proces	s produces	a n-type s	semicondu	uctor		(2 marks)		
	1 . A					·····				e 1	4 5 Ì	
			-						÷		(C. 1944)	
						8						
	(c)	Draw a	a circuit diagr	am to disti	inquish bet	ween for	ward and .		h!			
	• •				- Out	1014	una and	everse	ulas n	lodes of a	A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	.,	p-n ju	nction diode			11.						
	.,	p-n ju	nction diode	÷.,				ē.		(2 marks)		