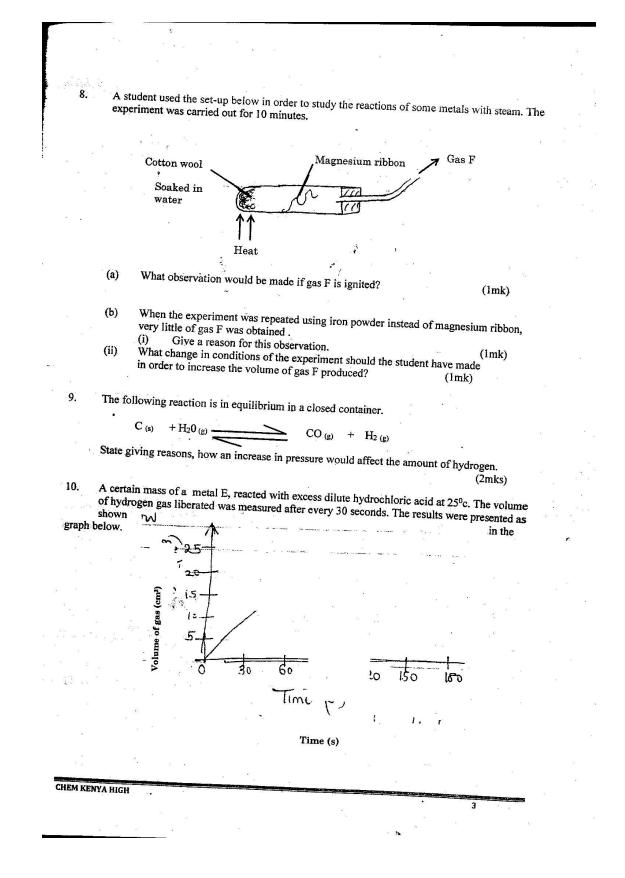
KENYA HIGH SCHOOL MOCK 2020 CHEMISTRY PAPER 1


233/1 CHEMISTRY PAPER 1 (Theory) JULY/2019 **KENYA HIGH SCHOOL** JULY 2019 CHEMISTRY Paper 1 INSTRUCTION TO CANDIDATES * 10 a) Write your name and index number in the spaces provided above. Sign and write the examinations in the spaces provided above. Answer <u>ALL</u> the questions in the spaces provided in the question paper. KNEC mathematical tables and silent non-programmable electronic calculators may be used. All working <u>MUST</u> be clearly shown where necessary. Candidates should answer the questions in English. b) c) d) e) g) For Examiner's Use Only 5 6 7 8 9 10 11 12 13 14 15 . 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 SECTION A: ste 1. A small crystal of potassium manganate VII was placed in a beaker containing water. The beaker was then left standing for two days without shaking. State and explain the observations that were made. (2mks) An atom of Z has two isotopes. It contains 90% of Isotope $\begin{array}{c} 16\\8\end{array}$ Z and 10% of Isotope 2. ¹⁸ Z Calculate the Relative Atomic mass of element Z. (2mks) • 3. Zinc carbonate was accidentally mixed with sodium chloride. Explain how solid sodium chloride salt could be obtained from the mixture. (3mks)

1.

5

CHEM KENYA HIGH

	4.	The gri (The let	d below tters are	is part of a not actual s	periodic ymbols c	table. U	se it to a ements.)	nswer	the questi	ons tha	at follow	v
			7	-			•					٦.
		,							R			1
		N	Q							S T	U	
		Р	-									
		L					_ ,			1]
	(a)	Indiante				• 1			· . ·	ă.		
	(4)	number	on the g is 14.	rid, the posi	tion of a	n eleme	nt repres	ented b	y letter V	, whos (1	e atom mk)	ic
	(b)	Select a	letter wh	ich represei	nts a mor	oatomi	c gas.			(1	mk)	
-												
	(c)	Write an	equation	for the read	ction bet	ween O	and T		0.			
5.	Starti	ng with cor	Der met	al describe				ofor		nk)		• •
5.		ing with cop red in the la	oper meta aboratory	al, describe V.	how a sa	mple o	f crystals		oper II cl	nloride (3)	mks)	
	The ta	ing with copured in the la able below a ment	pper meta aboratory gives ato	al, describe y. mic number	how a sa	mple o	f crystals		oper II cl	nloride (3)	mks)	
	The ta	ing with cop ared in the la able below g	pper meta aboratory gives ato	al, describe	how a sa	mple of	f crystals		oper II cl	nloride (3)	mks)	
	The ta	ing with cop red in the la able below a nent nic number	gives ato	al, describe y. mic number	how a sa	mple of ments re	f crystals presented D 20	d by th	oper II cl	nloride (3) A, B, C	mks) 2 and D. react.	
	The ta Elem Aton	ing with cop red in the la able below a nent nic number Name the	gives ato	al, describe w. mic number B 16 bonding that	how a sa	mple of nents re	f crystals presented 20 npound	d by th	oper II cl ac letters , when A	A, B, C and D (1n	mks) 2 and D. react. nk)	
6.	The ta Elem Atom (a)	ing with cop red in the la able below a nent nic number Name the Select the	gives ato A A boratory gives ato A type of t letter wh	al, describe mic number B 16 bonding that	how a sa	mple of nents re 7 n the con	f crystals presented 20 npound	d by th	oper II cl ac letters , when A	A, B, C and D (1n	mks) 2 and D. react. nk)	
	The ta Elem Atom (a) (b) What j	ing with cop red in the la able below a nent nic number Name the Select the as the name	gives ato A A boratory gives ato A by type of b letter wh	al, describe w. mic number B 16 bonding that	how a sa	mple of nents re 7 n the con	f crystals presented 20 npound	d by th	oper II cl ac letters , when A	A, B, C and D (1n	mks) 2 and D. react. nk) nks)	
ć.	The ta Elem Atom (a) (b) What j	ing with cop red in the la able below a <u>nent</u> <u>nic number</u> Name the Select the ability of a	gives ato A 15 type of t letter wh given to metal to	al, describe mic number B 16 bonding that nich represe each of the b be made in	how a sa	mple of nents re 7 n the con est oxid	f crystals presente 20 npound zing age	formed	oper II cl ac letters , when A	and D (1n (1n (1n (1m) (1m)	mks) 2 and D. react. nk) nks) nks)	
ć.	The ta Elen Atom (a) (b) What i (a)	ing with cop red in the la able below a <u>nent</u> <u>nic number</u> Name the Select the ability of a	gives ato A 15 type of t letter wh given to metal to	al, describe	how a sa	mple of nents re 7 n the con est oxid	f crystals presente 20 npound zing age	formed	oper II cl ac letters , when A	A, B, C and D (1n n. (2n	mks) 2 and D. react. nk) nks) nks)	
ć.	The ta Elem Atom (a) (b) What i (a) (b)	ing with cop red in the la able below a <u>nent</u> <u>nic number</u> Name the Select the ability of a minimum of	gives ato A 15 type of t letter wh given to metal to energy re	al, describe mic number B 16 bonding that nich represe each of the b be made in	how a sat rs of elen () t exists ir nts the ba followin nto a wire a chemica	mple of nents re 7 n the con est oxiding: al reacti	f crystals presented 20 npound zing age	formed	oper II cl ac letters , when A	and D (1m (1m (1m (1m) (1m)	mks) and D. react. nk) nks) nks) kk)	
6.	The ta Elem Atom (a) (b) What i (a) (b)	ing with cop red in the la able below a <u>nent</u> <u>nic number</u> Name the Select the ability of a minimum of type of force	gives ato A 15 type of t letter wh given to metal to energy re	al, describe	how a sat rs of elen () t exists ir nts the ba followin nto a wire a chemica	mple of nents re 7 n the con est oxiding: al reacti	f crystals presented 20 npound zing age	formed	oper II cl ac letters , when A	and D (1n (1n (1n (1m) (1m)	mks) and D. react. nk) nks) nks) kk)	

	(a)	Name one piece of apparatus that may be used to measure the vo	iume of the gas	
	onto\$10 03	produced.	(lmk)	• ¹⁹ 5
		· · ·	a.	
	(b)	(i) One the same axis, sketch the curve that would be obtained	ed, if the experiment	at
		was repeated at 35°c.	(1mk)	
			2	
		(ii) Explain the shape of your curve in b (i) above.	(lmk)	
			2	
ł. –	The di	iagram below shows extraction of sulphur from its deposits.		
		B		
			20 T	1
		>		
			1	
				•
	•	(Z Sulphur d	leposits	
			•	
	(a)	Name the process that is used to extract sulphur from its deposits	. (1mk)	12 M (1961
			()	i i
	(b)	Name the substances that pass through pipes A, B and C.	(2-1-)	A
	(0)		(3mks)	at data intera
		A:		
		B: C:		
		C:		
	State a	and explain what happens to the masses of the following substance	es when they are	2
	separa	tely heated in open crucibles.		a ry chine
	(a)	Potassium manganite VII	(2mks)	states and states
	(b)	Zinc oxide	(2mks)	6 IN 1 12/24
			(zuns)	1.91
	A 1	unium outide and with both and a literation		
i.	(a)	unium oxide reacts with both acids and bases. Write an equation for the reaction between Aluminium oxide and	hydrochloria asid	
			(lmk)	r 200 - 1
	45			
	(b)	Using equation (a) above, calculate the number of moles of hydro would react completely with 153g of Aluminium oxide ($AI = 27$,	ochloric acid that $0 = 16$ (2mks)	e ^{nter} e se ^{nt} e e
EM KI	ENYA HI	IGH		
			. 4	<u>4</u>

a) ---

.

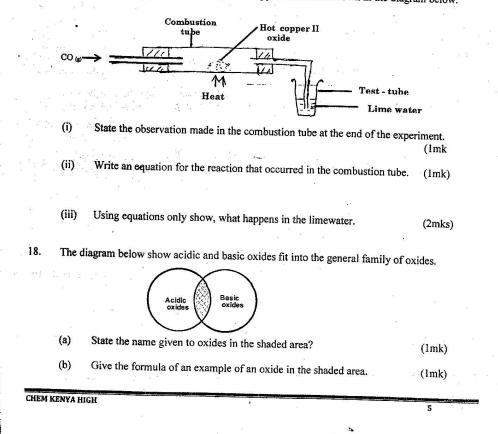
 14. Explain why there is a general increase in the first ionization energies of the elements in period

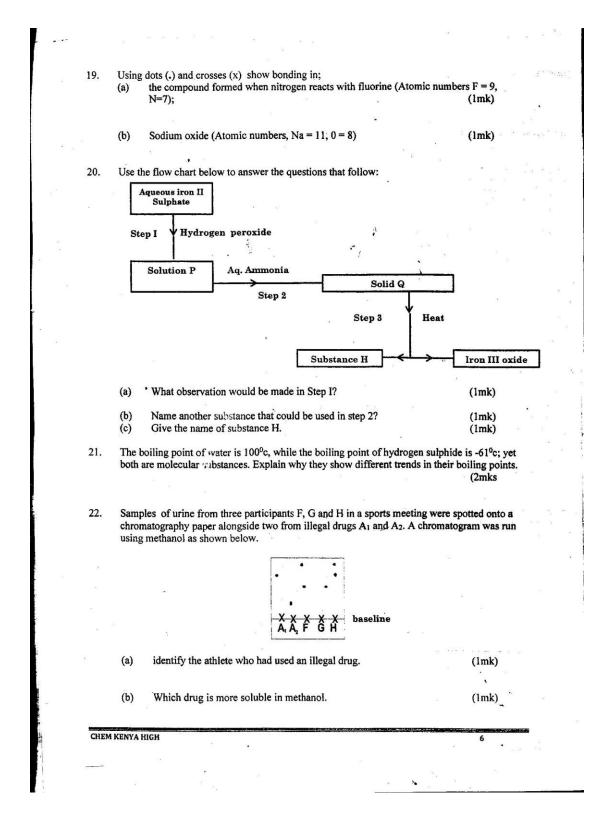
 3 of the periodic table from left to right.

 (2mks)

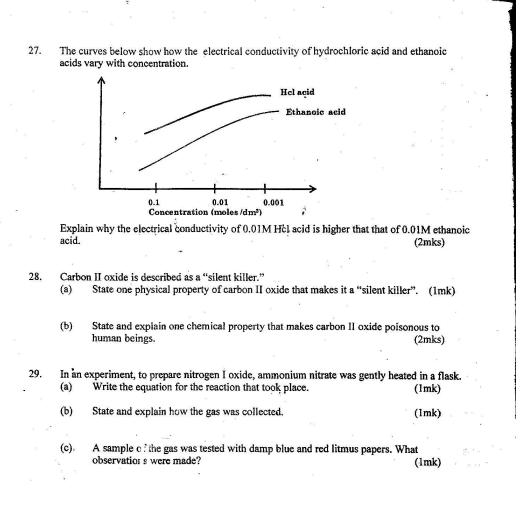
15. An alkanol has the following composition by mass; hydrogen 13.5%, oxygen 21.6% and carbon 64.9%
(a) Determine the empirical formula of the alkanol (a = 12; H = 1.0 = 10)

Determine the empirical formula of the alkanol (c = 12: H = 1, 0 = 16) (2mks)


(b) Given that the empirical formula and molecular formula of the alkanol are the same, draw the structure of the alkanol. (1mk)


16. A radioactive element X_{i} decays as follows:

216 208 b 84 82 Determine the values of a and b.


(2mks)

17. Carbon II oxide gas is passed through hot copper II oxide as shown in the diagram below.

	8			
23.	(a) State Graham's law of diffu	sion		
2	s to to the diffu	~.~!!!	(1mk)	
	(b) The molar masses of gases 1			
		w and X are 16 and 44 rial is $12 \text{ cm}^3/\text{sec}$	respectively. If the rate of diffusion and the rate of diffusion of X	on
2	through the same material.		nate the rate of diffusion of X (2mks)	e 6. 21. a. a. 6. 6.
$\tilde{T}^{\mu}_{\alpha-\alpha}$		1 1	•	
24.	Calculate the table below by writing	, the products formed a	at the electrodes during the	2.
	· . · · · · · · · · · · · · · · · · · ·		(3mks)	S ,
	Electrolyte	Product at anode		
2 = <u>1</u>	Aqueous sodium sulphate using	(¹ / ₂ mk)	Product at cathode (¹ /2mk)	
	inert electrodes		(/2mk)	
	Aqueous copper II sulphate using	(¹ /2mk)	(1/ 1)	
	copper electrodes		(¹ / ₂ mk)	
				·
5.	The pressure of nitrogen gas contained Calculate the:	ed in 1dm ³ cylinder of	- 106 ⁰ 2 mar 107	
a _			- 190°C was 10° pascals.	
	(a) Volume of the gas at 25° c and	1 10 ⁵ pascals.	$(1^{1}/_{2}mks)$	
2	a		e	
			a *	
	(b) Mass of nitrogen gas (molar g	as volume = 24dm ³ , N	T	
		the second	$(1^{-14.})$ (1 ¹ /2mke)	20 g
le s sinces			1 = 14. (1 ¹ / ₂ mks)	
	The C		(= 14.) (1 ¹ / ₂ mks)	
5.	The figure below shows an energy cy		(= 14.) (1 ¹ / ₂ mks)	
	The figure below shows an energy cyn $H_2(g) + O_2(g)$	cle		
		cle	101	
5		cle	101	
	H ₂ (g) + O ₂ (g)	cle	101	
		cle	101	
	H ₂ (g) + O ₂ (g)	cle	hol H2 02 (1)	
	$H_2(g) + O_2(g)$ $\Delta H_2 = -285.8 \text{kJ/mol}$	cle <u>AH1 = - 187.8kJ / m</u>	hol H2 02 (1)	
	$H_2 (g) + O_2 (g)$ $\Delta H_2 = -285.8 \text{kJ/mol}$	cle	hol H2 02 (1)	
	$H_2 (g) + O_2 (g)$ $\Delta H_2 = -285.8 \text{kJ/mol}$	cle $\Delta H_1 = -187.8 \text{ kJ / m}$ H ₁ 0 (0) + ¹ / ₂ 0 _{2 (g)}	hol H2 02 (1)	
	$H_2 (g) + O_2 (g)$ $\Delta H_2 = -285.8 \text{kJ/mol}$	cle $\Delta H_1 = -187.8 \text{ kJ / m}$ H ₁ 0 (0) + ¹ / ₂ 0 _{2 (g)}	hol H ₂ 0 _{2 (j)} ΔH ₃	
	$H_2 (g) + O_2 (g)$ $\Delta H_2 = -285.8 \text{kJ/mol}$	cle $\Delta H_1 = -187.8 \text{ kJ / m}$ H ₁ 0 (0) + ¹ / ₂ 0 _{2 (g)}	hol H2 02 (1)	
	$H_{2 (g)} + O_{2 (g)}$ $AH_{2} = -285.8 \text{kJ/mol}$ a) Give the name of the enthalpy of	cle $\Delta H_1 = -187.8 \text{ kJ / m}$ H ₁ 0 (0) + ¹ / ₂ 0 _{2 (g)}	hol H ₂ 0 _{2 (j)} ΔH ₃	
	$H_2 (g) + O_2 (g)$ $\Delta H_2 = -285.8 \text{kJ/mol}$	cle $\Delta H_1 = -187.8 \text{ kJ / m}$ H ₁ 0 (0) + ¹ / ₂ 0 _{2 (g)}	aol H₂ 0₂ (j) ΔH3 (lmk)	
	$H_{2 (g)} + O_{2 (g)}$ $AH_{2} = -285.8 \text{kJ/mol}$ a) Give the name of the enthalpy of	cle $\Delta H_1 = -187.8 \text{ kJ / m}$ H ₁ 0 (0) + ¹ / ₂ 0 _{2 (g)}	hol H ₂ 0 _{2 (j)} ΔH ₃	
	$H_{2 (g)} + O_{2 (g)}$ $AH_{2} = -285.8 \text{kJ/mol}$ a) Give the name of the enthalpy of	cle $\Delta H_1 = -187.8 \text{ kJ / m}$ H ₁ 0 (0) + ¹ / ₂ 0 _{2 (g)}	aol H₂ 0₂ (j) ΔH3 (lmk)	
	$H_{2 (g)} + O_{2 (g)}$ $AH_{2} = -285.8 \text{kJ/mol}$ a) Give the name of the enthalpy of	cle $\Delta H_1 = -187.8 \text{ kJ / m}$ H ₁ 0 (0) + ¹ / ₂ 0 _{2 (g)}	aol H₂ 0₂ (j) ΔH3 (lmk)	
($H_{2 (g)} + O_{2 (g)}$ $AH_{2} = -285.8 \text{kJ/mol}$ a) Give the name of the enthalpy of	cle $\Delta H_1 = -187.8 \text{ kJ / m}$ H ₁ 0 (0) + ¹ / ₂ 0 _{2 (g)}	aol H₂ 0₂ (j) ΔH3 (lmk)	
(H ₂ (g) + O ₂ (g) Δ H ₂ = - 285.8kJ/mol a) Give the name of the enthalpy (b) Determine the value of Δ H ₃ .	cle $\Delta H_1 = -187.8 \text{ kJ / m}$ H ₁ 0 (0) + ¹ / ₂ 0 _{2 (g)}	aol H₂ 0₂ (j) ΔH3 (lmk)	

