SUNSHINE SECONDARY SCHOOL MOCK 2019 PHYSICS PAPER 3

1. You are provided with the following:

- An ammeter (range $0-1.0$)
- A resistance wire labeled R
- A new dry cell (one)
- Five connecting wires
- Four corocodile clips
- One switch and a jockey
- A micrometer screw gauge
- A voltmeter ($0-3 \mathrm{~V}$)

Proceed as follows:
(a) (i) Assemble your apparatus as in the diagram below..

(ii) Adjust the length x of the wire to 25 cm by placing the jockey at point A . record the ammeter and voltmeter readings in the table below.

length x (cm)	25	35	45	55	65	75
length (100-x) cm						
current I (A)						
voltage V (v)						
$\frac{\mathbf{1}}{\boldsymbol{I}}\left(\boldsymbol{A}^{\mathbf{1}}\right)$						

(iii) Repeat the procedure above for other values of x given in the table above and record the corresponding ammeter and voltmeter reading.
(iv) Complete the table above by calculating the values of $(100-x)$ and reciprocal of current $(1 / \mathrm{I})$.
(v) (a) Plot a graph of length $(100-x)$ against $1 / \mathrm{I}$.
(b) Calculate the slope S of the graph.
(c) Using the micrometer screw gauge provided measure the diameter t , in metres. (2 mks)

$$
\mathrm{t}=
$$

\qquad
(d) Given that $\boldsymbol{P}=\frac{\boldsymbol{S E} \boldsymbol{t}^{2}}{\mathbf{4}}$
where S - slope of the graph $\mathrm{E}=1.5 \mathrm{~V}$
Determine the value of P .
2. You are provided with the following:

- Helical spring with pointer.
- One clamp, one stand and one boss
- A stop watch
- A metre rule or half-metre rule.
- One 50 g , four 20 g and one 300 g masses or slotted masses starting from 20 g to 150 g .

Proceed as follows:
(i) Suspend the spring vertically alongside the clamped metre rule as shown in the figure below. Measure the length L_{0}, of the spring before loading it.
$\mathrm{L}_{0}=$ \qquad cm
(1 mk)

(ii) Attach a mass of 20 g on spring and measure the new length L , of the spring. Record this in table 2.
(iii) Calculate the change in the length, $\mathrm{e}=\mathrm{L}-\mathrm{L}_{0}$ due to the mass of 20 g and record this in table 2 below.
(iv) Repeat the steps (ii) and (iii) using additional masses of 20 g and record yourbresults in table 2 below.

Mass (g)	20	40	60	80	100	120
L (cm)						
(L-L 0), e (cm)						

Table 2
(4 mks)

Plot a graph of extension, e (y axis) against the mass.

(v) Determine the gradient S of the graph.
(2 mks)
(vi) Using the same set up as in the figure above attach the 120 g mass on the spring and support it from below with your palm so that it does not oscillate.
(vii) Pull the mass a small distance vertically downwards and release it to execute vertical oscillations. Record on table 3 below the time, t, for twenty complete oscillations. Repeat to obtain a total of three readings i.e. $\mathrm{t}_{1}, \mathrm{t}_{2}$ and t_{3}. This is also done for a mass of 150 g .

	Time for 20 oscillations	Average times(s)	

Mass (g)	$\mathrm{t}_{1}(\mathrm{~s})$	$\mathrm{t}_{2}(\mathrm{~s})$	$\mathrm{t}_{3}(\mathrm{~s})$	$\frac{t_{1}+t_{2}+t_{3}}{3}$	$\mathrm{~T}(\mathrm{~s})$	T^{2} $(\mathrm{~s})^{2}$	$\mathrm{T}^{2} / \mathrm{M}$ $\left(\mathrm{S}^{2} \mathrm{~g}^{-1}\right)$
120							
150							

Table 3
(4 mks)
(viii) Find the average value of $T^{2} / M \quad$ let this value be Q .
(ix) Given that the gradient S is given by $S=\frac{Q K}{4 \pi^{2}}$, determine the constant K. (2 mks)
(x) What does K represent?

This is the last printed page.

