SUNSHINE SECONDARY SCHOOL MOCK 2019 CHEMISTRY PAPER 3

1. You are provided with:

- Solution P of Potassium manganate (VII).
- 0.05 M solution Q of oxalic acid.
- Solution R containing 4.9 g of ammonium iron (II) Sulphate, $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \cdot \mathrm{FeSO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$, in $250 \mathrm{~cm}^{3}$ of water.

You are required to:
i) Determine the rate of reaction between oxalic acid and Potassium manganate (VII).
ii) Standardize the solution P.

PROCEDURE I:

Using a measuring cylinder, place $1 \mathrm{~cm}^{3}$ of solution P into each of the five (5) test-tubes in a rack. Clean the measuring cylinder and use it to place $19 \mathrm{~cm}^{3}$ of solution Q into a boiling tube. Prepare a water bath by placing about $200 \mathrm{~cm}^{3}$ of water into a beaker and start to heat. Place a thermometer into solution Q and place it in the warm water until it attains a temperature of $40^{\circ} \mathrm{C}$. Remove the boiling tube from the water bath and place it in the test-tube rack. Add the first portion of solution P immediately and at the same time start a stop watch. Record the time taken for solution P to be decolourised in table I below. Repeat the procedure at temperatures of $50^{\circ} \mathrm{C}, 60^{\circ} \mathrm{C}, 70^{\circ} \mathrm{C}$ and $80^{\circ} \mathrm{C}$ to complete the table.

Temperature of solution Q $\left({ }^{\circ} \mathrm{C}\right)$	40	50	60	70	80
Time taken for decolourisation (tsecs)					
$1 / \mathrm{t} \mathrm{sec}$					

i) Plot a graph of $1 / \mathrm{t}$ against temperature (X -axis).

	1	+	+L/	L-	\square	-	-	\square	-	-	I	+	-	-	$\underline{\square}$	W-1	W-1	+T-	W-1	
								-	-											
					,				-											
									\square											
			\square					\square	\square	-			,	\cdots					,	
									\cdots											
									-											
								-					-	\bigcirc			-	-	-	
								\cdots												
		-	\underline{L}	-	-	,	-	-	$\underline{+}$	\square	-	-	$\underline{+}$	$\underline{\sim}$	-	-	-	-	-	
										7								-	-	
						\square		\square	-	\square	-						\cdots			
									-											
																		-		
								,	-				\cdots					,	,	
									\cdots											
								-												
								-	-											
									-				-			\square				
						H		-	-											
					-	,	\square	-	\square	\square		\square								
					-				-											
						,			-											

ii) From the graph determine the time taken for the mixture to decolourise at $65^{\circ} \mathrm{C}$
\qquad
\qquad
\qquad
\qquad
iii) How does the rate of reaction between oxalic acid and Potassium manganate (VII) vary with temperature?
\qquad
\qquad
\qquad

PROCEDURE II

Fill a burette with solution P. Pipette $25 \mathrm{~cm}^{3}$ of solution R into a conical flask and titrate the solution P against solution R until a permanent pink colour just appears. Record your results in table II below and repeat the procedure to fill the table.

	I	II	III
Final burette reading $\left(\mathrm{cm}^{3}\right)$			
Initial burette reading $\left(\mathrm{cm}^{3}\right)$			
Volume of solution P used $\left(\mathrm{cm}^{3}\right)$			

i) Determine the average volume of P used. cm^{3}
(Show how you arrive at your answer)
ii) Calculate the concentration of solution R in moles per litre. $(\mathrm{Fe}=56, \mathrm{~S}=32, \mathrm{O}=16, \mathrm{~N}=14, \mathrm{H}=1)$.
(2marks)
\qquad
\qquad
\qquad
iii) Find the number of moles of solution R used
\qquad
\qquad
\qquad
iv) Given the ionic equation for the reaction is

$$
5 \mathrm{Fe}^{2+}(\mathrm{aq})+\mathrm{MnO}_{4}^{-}(\mathrm{aq})+8 \mathrm{H}^{+}(\mathrm{aq}) \longrightarrow 5 \mathrm{Fe}^{3+}(\mathrm{aq})+\mathrm{Mn}^{2+}(\mathrm{aq})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

Find the number of moles of solution P used .
\qquad
\qquad
\qquad
v) Determine the concentration of the Potassium manganate (VII), solution P in moles per litre. (2 marks)
\qquad
\qquad
\qquad
2. You are provided with solid B. Carry out the tests below and record your observations and inferences in the table below.
i) Place half a Spaluta full of solid B in a clean dry test-tube and heat gently then strongly.

| Observations | Inferences | |
| :--- | :--- | :--- | :--- |
| | | |
| | | |
| $(1$ mark $)$ | | $(1$ mark $)$ |

ii) Place the remaining solid B in a boiling tube and add about $5 \mathrm{~cm}^{3}$ of distilled water and shake well. Divide the resulting mixture into four portions for the tests below.

Observations	Inferences	
	$(1 \mathrm{mark})$	
$(1 \mathrm{mark})$		

a) To the first portion add Sodium hydroxide solution dropwise until in excess.

Observations	Inferences

b) To the second portion add 2-3 drops of dilute Sulphuric (VI) acid

Observations	Inferences

| (1mark) | (1mark) |
| ---: | ---: | ---: |

c) To the third portion add aqueous ammonia dropwise until in excess.

Observations	Inferences	
	$(1 \mathrm{mark})$	
$(1 \mathrm{mark})$		

d) To the fourth portion add 2-3 drops of barium nitrate solution

Observations	Inferences	
	$(1 \mathrm{mark})$	
$(1 \mathrm{mark})$		

3. You are provided with solid L. Carry out the tests below on L and record the observations and inferences in the spaces provide.
a) Place half of solid L in a boiling tube and add about $5 \mathrm{~cm}^{3}$ of distilled water. Divide the resulting mixture into two portions for the tests below:
i) To the first portion add 2-3 drops of acidified Potassium manganate (VII).[Solution P]

Observations	Inferences		
	$(1 \mathrm{mark})$		$(1 \mathrm{mark})$

ii) To the second portion dip a piece of blue litmus paper

Observations	Inferences	
$(1$ mark $)$		$(1$ mark $)$

b) Place the remaining solid L in a metallic spatula and ignite it.

Observations	Inferences

$(1 \mathrm{mark})$	

