KCSE TRIAL 2019

CHEMISTRY PAPER 3 QUESTIONS

1. You are provided with:

- A dibasic acid labeled solution P.
- Solution R containing 5.56 g per litre of potassium carbonate.
- Aqueous sodium hydroxide labeled solution T. You are required to determine the;
- Concentration of solution P in moles per litre.
- Molar heat of neutralization of solution P with sodium hydroxide labeled solution T.

PROCEDURE I:

Using a pipette filler, place 25 cm³ of solution P into a 250 ml volumetric flask. Add distilled water to make 250 ml of solution and label this solution as Q. Place solution Q in a burette. Clean the pipette and use it to place 25.0 cm³ of solution R into a conical flask. Add 2 drops of methyl orange indicator provided and titrate with solution Q. Record your results in table I. Repeat the titration two more times and complete the table.

Ta**ble 1**

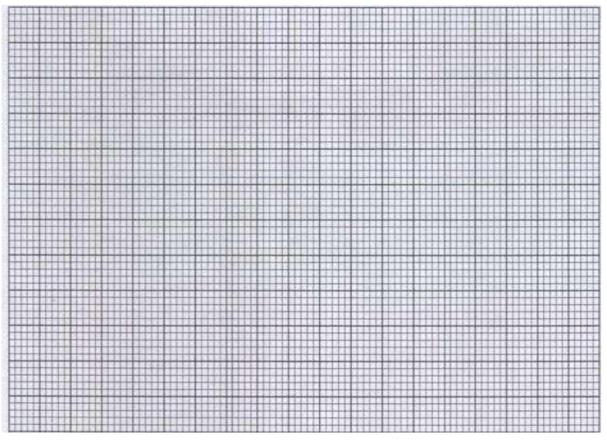
	Ι	II	III	
Final burette reading (cm ³)			Ť.	
Initial burette reading (cm ³)			2	
Volume of solution Q used (cm ³)				

Calculate the: (4 marks

a) Average volume of solution Q used. (1 mark)

b) Concentration of potassium carbonate in moles per litre of solution R. (K=39.0,O=16.0,C=12.0) (1 mark)

- c) Number of moles of potassium carbonate solution R used. (1 mark)
- d) Concentration of dibasic acid in moles per litre of solution Q. (2 marks)
- e) Concentration of solution P in moles per litre. (1 mark)


PROCEDURE II

Clean the burette and fill it with solution T. Clean the pipette and use it to place 25.0cm³ of solution P into a 100 cm³ beaker. Measure the initial temperature of this solution and record it in table II. From the burette, place 5 cm³ of solution T into the beaker containing 25.0cm³ of solution P, stir the mixture carefully and record the highest temperature of this mixture in table II. Place another 5 cm³ of solution T into the mixture in the beaker, stir carefully and record the highest temperature of this mixture in table II. Continue this procedure of placing 5 cm³ portions of solution T onto 25 cm³ of solution P and complete table II below.

TABLE II

Temperature (°C)		,				(Anna)	
Volume of solution P(cm ³)	25	25	25	25	25	25	25
Total volume of solution T added (cm ³)	0	5	10	15	20	25	30

a) On the grid provided, draw a graph of temperature (vertical axis) against volume of solution T used. (3 marks)

b) From the graph determine;

- i. The highest temperature change, (1 mark)
- ii. The volume of solution T required to react with 25cm³ of solution P. (1 mark) c)

Calculate the; i. The number of moles of solution P used. (1 mark)

ii. Molar heat of neutralization of P with sodium hydroxide labeled T. (Assume the specific heat capacity of the solution is $4.2Jg^{-1}K^{-1}$ and density of solution is 1.0 g cm^{-3}) (2 marks)

2. You are provided with 10 cm³ of solution H. Carry out the tests below and record your observations and inferences in the spaces provided.

a) Add 20 cm³ of 2 M aqueous sodium hydroxide to all of solution H provided. Shake well and filter the mixture. Collect the filtrate in a conical flask. Retain the filtrate for use in tests b, c and d below. Observations

Observation	Inferences
(1 mark)	(1 mark)

b) To about 2 cm³ of the filtrate, add 3 cm³ of 2M nitric acid. Retain the mixture for use in b(i) and (ii) below.

i. To about 2 \mbox{cm}^3 of solution obtained in (b) above add 2 M aqueous sodium hydroxide drop wise until in excess.

Observation	inferences
(1 mark)	(1 mark)
$\frac{1}{100}$	and 2 M aguages anomaria dua muiae until in

ii. To about 2 cm² of another solution obtained in (b) above, add 2 M aqueous ammonia dropwise until in excess.

Observation	Inferences
(1 mark)	(1 mark)
c) To 2 cm ³ portion of the filtrate, add 3 drops of 2	M hydrochloric acid
Observation	Inferences
(1 mark)	(1 mark)
d) To 2 cm ³ portion of the filtrate, add 3 drops of	acidified barium chloride.
Observation	Inferences
(1 mark)	(1 mark)

3. You are provided with solid J. Carry out the tests below. Write your observations and inferences in the spaces provided.

a) Using a clean spatula heat about a half of solid J in a Bunsen burner flame.

(1 mark)	Observation	Inferences
	(1 mark)	(1 mark)

b) Dissolve the remaining portion of solid J into about 10 cm³ of distilled water and divide the solution into 3 portions.

i. To the first portion, add two drops of acidifies potassium manganate (vii) solution

Observation	Inferences
(1 mark)	(1 mark)
ii. Determine the pH of the second portion using	universal indicator paper.
Observation	Inferences

(1 mark)	(1 mark)	
iii. To the third portion, add a small amount of solid sodium hydrogen carbonate.		
Observation	Inferences	
(1 mark)	(1 mark)	