KCSE PREDICTIONS 2019 CHEMISTRY PAPER 3

Q1. You are provided with:

Solution P:Iron (II) ammonium Sulphate crystalsFeSO4 (NH4)2SO4 XH2O containing 9.8 g in 250 cm3 of solutionSolution Q:0.02 M of acidified Potassium manganate (VII)

You are required to:

- Determine the Relative Formula Mass of FeSO₄·(NH₄)₂SO₄·xH₂O.
- Determine the value of x in FeSO₄ (NH₄)₂SO₄ xH₂O

Procedure I

- i) Fill a clean burette with solution Q.Record the initial burette reading in the Table I below.
- Pipette 25.0 cm³ of solution P into a clean conical flask and titrate it with solution Q from the burette. Stop titrating when the solution in the conical flask JUST turns pink.
- iii) Record your results in Table I below.
- iv) Repeat the above procedure two more times and record your results in Table I below.
- a) Table I

Experiment	1	2	3
Final burette reading (cm ³)			
Initial burette reading (cm ³)			
Volume of solution Q used (cm ³)			

{3 marks}

{1 mark}

Complete the table above by filling volume of solution Q used.

b) Calculate the average volume of solution Q used. (Show clearly your working)

c) Calculate the number of moles of solution Q that reacted. {1 mark}

d) Given that the ionic equation for the reaction is:

5 $Fe^{2+}_{(aq)}$ + $8H^{+}_{(aq)}$ + $MnO^{-}_{4(aq)} \rightarrow 5Fe^{3+}_{(aq)}$ + $4H_2O_{(I)}$ + $Mn^{2+}_{(aq)}$

 Determine the number of moles of the Iron (II) salt solution P in 25.0 cm³ of the solution used. {1 mark}

ii) Determine the molarity of the Iron (II) salt solution P. {1 mark}

iii) Calculate the concentration of the Iron (II) salt solution P in grams per litre. {1 mark}

e) Determine the Relative Formula Mass of the salt FeSO₄ (NH₄)₂SO₄ ·xH₂O . {1 mark}

f) Given that, Fe = 56, N = 14, S = 32, O = 16, determine the value of x in the formula $FeSO_4$ (NH₄)₂SO₄ xH₂O {2 marks} Q2. You are provided with:

Solution R: I M solution of an unknown acid.

Solution T: I M solution of Sodium hydroxide.

You are required to:

- Determine the basicity of the unknown acid solution R.
- Find the heat of neutralization, ΔH of Sodium hydroxide, solution T.

Procedure II

- i) Using a 50 ml measuring cylinder measure 40 cm³ of solution R into a 100 ml plastic beaker.
- ii) Measure the steady temperature, T₁ of solution R and record in Table II below.
- iii) With a clean 100 ml measuring cylinder, measure 5 cm³ of solution T.
- iv) Pour this solution T into the 100 ml beaker containing 40 cm³ of solution R. Stirring gently with a thermometer, measure the highest temperature, T_2 of the mixture and record in Table II below.
- v) **Rinse** the measuring cylinders, thermometer and the 100 ml plastic beaker.
- vi) Repeat the procedure above using the volumes of solution R and solution T as indicated in Table II below. Remember to **rinse the apparatus after each experiment**.

Experiment number	1	2	3	4	5	6	7	8
Volume of solution R (cm ³)	40	35	30	25	20	15	10	5
Volume of solution T (cm ³)	5	10	15	20	25	30	35	40
Final temp. T ₂ (°C)								
Initial temp. T ₁ (°C)								

Table II

	Temp.							
ch	nange ∆T							
	(°C)							
a)	i)	Complete the Table II by filling the temperature change. {4 marks}					{4 marks}	
	ii)	On the provided graph paper, plot a graph of Temperature change, ΔT against the volume						
		of solution T used.						{2 marks}
	iii)	What is the maximum	rise in temp	erature?				{1 mark}

iv) Using information from the graph, calculate the number of moles of the unknown acid, solution R needed to produce the temperature change above. {1 mark}

- v) Using the graph, determine the number of moles of Sodium hydroxide needed for complete neutralization of the acid. {1 mark}
- vi) Calculate the number of moles of H⁺ ions per mole of acid. {1 mark} (Basicity of the acid)

vii) Using the experimental results, calculate the molar heat of neutralization of Sodium hydroxide. {1 mark}
(Specific heat capacity of water = 4.2 kJ/Kg/K. Assume density of solution = 1 g/cm³)

- Q3. You are provided with:
 - 0.5 g solid V
 - 0.5 solid W

You are required to carry out the tests below to identify solid V and solid W. Record your observations and inferences in the spaces provided.

a) i) Put all solid V provided into a clean test-tube. Add about 5 cm³ of dilute 2 M Nitric (V) acid and warm briefly. Filter the mixture in a test-tube and **retain** the filtrate.

Observations	Inferences
{1 mark}	

ii) Divide the filtrate obtained in a(i) above into two portions.
To the first portion add about 3 – 4 drops of aqueous 2 M Sodium hydroxide solution followed by excess.

Observations	Inferences
{2 marks}	{1 mark}

iii) To the second portion add about 3 – 4 drops of aqueous 2 M Ammonia solution followed by excess.

Observations Inferences

{2 marks}	{2 marks}

b)

i)

Put all solid W into a clean test-tube. Add about 5 cm³ of dilute nitric (V) acid. Test for any gas produced. **Retain** the sample in the test-tube.

Observations	Inferences
{2 marks}	{1 mark}

ii) Divide the sample obtained in b(i) above into two portions.

To the first portion, add a few drops of aqueous 2 M Sodium hydroxide solution followed by excess.

Observations	Inferences
{2 marks}	{1 mark}

iii) To the second portion, add a few drops of aqueous 2 M Ammonia solution followed by excess.

Observations	Inferences
{1 mark}	{1 mark}

c) Give the chemical formula of:

i)	the anion present in solid W	{1 mark}	
ii)	the cation present in: I)	solid V	{½ mark}
	ii)	solid W	{½ mark}