KCSE PREDICTIONS 2019

CHEMISTRY PAPER 3

Q1. You are provided with:
Solution P: Iron (II) ammonium Sulphate crystals $\mathrm{FeSO}_{4} \cdot\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \cdot \mathrm{xH}_{2} \mathrm{O}$ containing 9.8 g in $250 \mathrm{~cm}^{3}$ of solution
Solution Q: $\quad 0.02 \mathrm{M}$ of acidified Potassium manganate (VII)

You are required to:

- Determine the Relative Formula Mass of $\mathrm{FeSO}_{4} \cdot\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \cdot \mathrm{xH}_{2} \mathrm{O}$.
- Determine the value of x in $\mathrm{FeSO}_{4} \cdot\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \cdot \mathrm{xH}_{2} \mathrm{O}$

Procedure I

i) Fill a clean burette with solution Q .

Record the initial burette reading in the Table I below.
ii) Pipette $25.0 \mathrm{~cm}^{3}$ of solution P into a clean conical flask and titrate it with solution Q from the burette. Stop titrating when the solution in the conical flask JUST turns pink.
iii) Record your results in Table I below.
iv) Repeat the above procedure two more times and record your results in Table I below.
a) Table I

Experiment	1	2	3
Final burette reading $\left(\mathrm{cm}^{3}\right)$			
Initial burette reading $\left(\mathrm{cm}^{3}\right)$			
Volume of solution Q used $\left(\mathrm{cm}^{3}\right)$			
3 marks			

Complete the table above by filling volume of solution Q used.
b) Calculate the average volume of solution Q used.
(Show clearly your working)
c) Calculate the number of moles of solution Q that reacted.
d) Given that the ionic equation for the reaction is:
$5 \mathrm{Fe}^{2+}{ }_{(\text {aq })}+8 \mathrm{H}^{+}{ }_{\text {(aq) }}+\mathrm{MnO}_{4(\text { aq })} \rightarrow 5 \mathrm{Fe}^{3+}{ }_{(\text {aq })}+4 \mathrm{H}_{2} \mathrm{O}_{(l)}+\mathrm{Mn}^{2+}{ }_{(\text {aq })}$
i) Determine the number of moles of the Iron (II) salt solution P in $25.0 \mathrm{~cm}^{3}$ of the solution used.
ii) Determine the molarity of the Iron (II) salt solution P.
iii) Calculate the concentration of the Iron (II) salt solution P in grams per litre.
e) Determine the Relative Formula Mass of the salt $\mathrm{FeSO}_{4} \cdot\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \cdot \mathrm{xH}_{2} \mathrm{O}$.
f) Given that, $\mathrm{Fe}=56, \mathrm{~N}=14, \mathrm{~S}=32, \mathrm{O}=16$, determine the value of x in the formula $\mathrm{FeSO}_{4} \cdot\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \cdot \mathrm{xH}_{2} \mathrm{O}$

Q2. You are provided with:
Solution R: I M solution of an unknown acid.
Solution T: I M solution of Sodium hydroxide.

You are required to:

- Determine the basicity of the unknown acid solution R.
- Find the heat of neutralization, ΔH of Sodium hydroxide, solution T.

Procedure II

i) Using a 50 ml measuring cylinder measure $40 \mathrm{~cm}^{3}$ of solution R into a 100 ml plastic beaker.
ii) Measure the steady temperature, T_{1} of solution R and record in Table II below.
iii) With a clean 100 ml measuring cylinder, measure $5 \mathrm{~cm}^{3}$ of solution T .
iv) Pour this solution Tinto the 100 ml beaker containing $40 \mathrm{~cm}^{3}$ of solution R. Stirring gently with a thermometer, measure the highest temperature, T_{2} of the mixture and record in Table II below.
v) Rinse the measuring cylinders, thermometer and the 100 ml plastic beaker.
vi) Repeat the procedure above using the volumes of solution R and solution T as indicated in Table II below. Remember to rinse the apparatus after each experiment.

Table II

Experiment number	1	2	3	4	5	6	7	8
Volume of solution R $\left(\mathrm{cm}^{3}\right)$	40	35	30	25	20	15	10	5
Volume of solution T $\left(\mathrm{cm}^{3}\right)$	5	10	15	20	25	30	35	40
Final temp. $\mathrm{T}_{2}\left({ }^{\circ} \mathrm{C}\right)$								
Initial temp. T_{1} $\left({ }^{\circ} \mathrm{C}\right)$								

Temp. change ΔT (${ }^{\circ} \mathrm{C}$)						
a) i)	Complete the Table II by filling the temperature change.					\{4 marks $\}$
ii)	On the provided graph paper, plot a graph of Temperature change, ΔT against the volume					
	of solution T used.					\{2 marks $\}$
iii)	What is the maximum rise in temperature?					\{1 mark\}

iv) Using information from the graph, calculate the number of moles of the unknown acid, solution R needed to produce the temperature change above.
\{1 mark\}
v) Using the graph, determine the number of moles of Sodium hydroxide needed for complete neutralization of the acid.
\{1 mark\}
vi) Calculate the number of moles of H^{+}ions per mole of acid.
(Basicity of the acid)
vii) Using the experimental results, calculate the molar heat of neutralization of Sodium hydroxide.
(Specific heat capacity of water $=4.2 \mathrm{~kJ} / \mathrm{Kg} / \mathrm{K}$. Assume density of solution $=1 \mathrm{~g} / \mathrm{cm}^{3}$)

Q3. You are provided with:

- 0.5 g solid V
- 0.5 solid W

You are required to carry out the tests below to identify solid V and solid W . Record your observations and inferences in the spaces provided.
a) i) Put all solid V provided into a clean test-tube. Add about $5 \mathrm{~cm}^{3}$ of dilute 2 M Nitric (V) acid and warm briefly. Filter the mixture in a test-tube and retain the filtrate.
Observations \quad Inferences
ii) Divide the filtrate obtained in a(i) above into two portions.

To the first portion add about $3-4$ drops of aqueous 2 M Sodium hydroxide solution followed by excess.

Observations	Inferences

iii) To the second portion add about 3-4 drops of aqueous 2 M Ammonia solution followed by excess.

Observations	Inferences

\square
b) i) Put all solid W into a clean test-tube. Add about $5 \mathrm{~cm}^{3}$ of dilute nitric (V) acid. Test for any gas produced. Retain the sample in the test-tube.

Observations	Inferences	
	$\{2$ marks $\}$	

ii) Divide the sample obtained in b(i) above into two portions.

To the first portion, add a few drops of aqueous 2 M Sodium hydroxide solution followed by excess.

Observations	Inferences	
	$\{2$ marks $\}$	

iii) To the second portion, add a few drops of aqueous 2 M Ammonia solution followed by excess.

| Observations | Inferences | |
| ---: | ---: | ---: | ---: |
| | | |
| | | |
| | $\{1$ mark $\}$ | |

c) Give the chemical formula of:
i) the anion present in solid W.
ii) the cation present in: I) solid V \{1⁄2 mark\}
ii) solid W \{1⁄2 mark\}

